Detecting Localized Trace Species in Air Using Radar REMPI (Spin polarization and detection of Xe 129)

Richard B. Miles and Arthur Dogariu

Princeton University, Princeton, NJ 08540, USA

miles@princeton.edu

Remote Atmospheric Magnetometry Workshop April 25 & 26, 2014

Outline

- Radar REMPI (Resonantly Enhanced Multi-Photon Ionization)
- Trace detection (Nitric Oxide)
- Remote detection
- Xe spectra and detection
- Methods to spin polarize xenon
- Methods to detect spin polarized xenon

Trace species detection - Optical methods

- Absorption spectroscopy, Cavity-based techniques, Photo-Acoustic Spectroscopy, Polarization spectroscopy, Resonantly enhanced multi-photon ionization (REMPI), Mass spectrometry
- Rayleigh Scattering, Spontaneous Raman, Stimulated Raman, Coherent anti- Stokes Raman spectroscopy (CARS), Degenerate four-wave mixing (DFWM), Laser Induced Fluorescence (LIF), Light scattering (LIDAR)
- Laser Induced Breakdown Spectroscopy (LIBS)

Ideal true stand-off detection: no access to target (both source and detector), non-intrusive, localized if possible, high sensitivity and selectivity.

Possible Show Stoppers for Optical Detection

Selectivity

- Many molecules have similar spectral features. What is needed is a unique spectral feature in a transparent region of the atmosphere
- Spectral features may be obscured by other air contaminants such as gasoline vapor
- Spectral features may fall into a non atmospheric transparent region of the spectrum (<200nm in the vacuum UV)

Detectivity

- Photon limit one photon (absorbed or emitted) per molecule is the maximum that is available for many approaches – usually much less due to the partition function
- Most fluorescence lines are strongly quenched in the atmosphere
- Incoherent signal 1/r² drop off in return signal
- Shot noise
- Laser induced fluorescence and other laser associated clutter
- Solar Background

REMPI

Resonantly Enhanced Multi-Photon Ionization:

- An intense laser pulse ionizes the atom and creates charges/plasma.
 - The ionization is strongest when the photon(s) energy equals the energy difference between excited and ground state.
 - Extra photons bring the energy above the ionization energy of the atom (the energy required to remove one electron from an isolated, gas-phase atom).
 - Example: 2+1 REMPI = 2 photons to excite and 1 to ionize.
- Very high sensitivity and excellent selectivity
- Accesses spectral features that may be in non transparent regions of the surrounding gas
- Usually requires detection with electrodes or ion mass spectroscopy at low pressures.
- At atmospheric pressure, free electrons have a lifetime of $\sim 10^{-8}$ sec due to attachment and recombination

Radar REMPI

- Microwave scattering from laser-induced carriers.
- Microwave illuminates the ionization spot.
- Microwave scattering is collected.
- The interaction between plasma and microwave depends upon the skin depth of the plasma.

$$\delta = \delta(\sigma, \omega)$$

Radar REMPI: Microwave Detection

- Homodyne 100 GHz system.
- 100 GHz probes the plasma.
- The mixer output is proportional with the scattering amplitude, hence electron density

- Selectivity and sensitivity: independent!
 - Selectivity: laser wavelength ($\Delta \lambda \approx \text{cm}^{-1}$)
 - Sensitivity : microwave detection
- Truly standoff backscattering detection
- Non-intrusive, localized (laser spot)
- No daylight optical interference
- Bonus: sub-nanosecond temporal resolution!

Nitric Oxide Detection

- Linearity from ppm to ppb
- High temporal resolution
- Detection sensitivity ppb

A. Dogariu and R. B. Miles, Appl. Opt. 50, A68 (2011).

Detection sensitivity for Nitric Oxide in atmospheric air

- We reduce NO to ppb!
- Signal for 10 and 40ppb, same as air
- Level of NO in air: ~40 ppb
- Literature: 0.4-100 ppb
- Detection of NO in air with ppb accuracy.

- Ppb levels: record for true stand-off detection of trace species.
- Backscattered (not "through") detection, no background light interference

Weakly ionized Plasma: Rayleigh Scattering

Standoff NO detection

Detection:

Perpendicular to the laser

Along the laser

226 nm laser is 10 m away

Standoff Radar detection

- 95 GHz microwave system 400mW source
- Laser induced plasma –
 25 ft. away
- 1-10 microsecond pulses (or CW)
- Dual lens system (sender/receiver)
- Phase sensitive homodyne detection

25ft standoff distance

Coherent signal enhancement

- Two laser induced plasma spots
- Standoff distance: 25 feet
- Moving one spot by 1.5mm (λ /2) changes the signal (electric field) by π /2 (blue curve)
- Signal from both adds constructively (in phase) or destructively (out of phase)
- Bragg scattering enhances the signal in the backscattered direction.

Approaches to Improve Detectivity

- Increased microwave power and intensity
 - Pulse the microwave synchronously with the laser
 - Focus the microwaves to increase the intensity
- Increase the microwave detection bandwidth
 - Use sharp leading edge of the time response
 - Differential detection (before and after the leading edge)
- Use coherent array of laser spots to enhance backscattering
- Use heterodyne detection with phase sensitivity
- Use microwave detector array
- Use coherent addition from sequential pulses (synthetic aperture radar)
- Optimize the microwave frequency

Atomic Magnetometry

- Magnetometry: Measurement of the strength of a magnetic field
 - Here, we restrict this discussion to scalar magnetometry
- Atomic magnetometry: "Device that makes use of resonant light to create long lived orientations, which undergo larmor precession in a magnetic field. This precession can then be measured in terms of a change in the optical absorptive or dispersive properties of these atoms."
 - Budker and Romalis (2007)

Remote Magnetometry

- Hyperpolarization (spin polarization) has to be effected remotely
- Choice of spin polarized gas has to be naturally occurring in the earth's atmosphere
 - Preferably in (relatively) large amounts
- Concentrations of this gas should be fairly constant within regions where magnetic field measurements are expected to be made
 - Noble gases are ideal since they are inert

Choice of Spin Polarized C

Table I

Atmospheric Species (from Goody²)

		-
Constituen:	Fractional Abundance of Molecules	Molecules per cn at Sea Level
Mitrogen (M ₂)	0.781	2.10 x 10 ¹⁹
Oxygen (0 ₂)	0.209	5.62 x 10 ¹⁸
Argon (Ar)	9.34 x 10 ⁻³	2.51 x 10 ¹⁷ ·
Carbon Dioxide (CO ₂)	3.1 x 10 ⁻⁴	8.33 x 10 ¹⁵
Neon (Ne)	1.82 x 10 ⁻⁵	4.89 x 10 ¹⁴
Helium (He)	5.24 x 10 ⁻⁶	1.41 x 10 ¹⁴
Mathema (CR ₄)	1.5 x 10 ⁻⁶	4.03 x 10 ¹³
Krypton (Kr)	1.14 x 10 ⁻⁶	3.06 x 10 ¹³
Hydrogen (H ₂)	5 x 10 ⁻⁷	1.34 x 10 ¹³
Nitrous Oxide (N ₂ 0)	3 × 10 ⁻⁷	8.06 x 10 ¹²
Xenon (Xe)	8.7 × 10 ⁻⁸	2.34 x 10 ¹²
Carbon Monoxide (CO)	- 10 ⁻⁷	2.69 x 10 ¹²
Ozone (0 ₃)	- 10 ⁻⁸	2.69 x 10 ¹¹
Mirrogen Dioxide (NO ₂)	- 10 ⁻⁸	2.69 x 10 ¹¹
Nitria Oxide (NO)	- 10 ⁻⁸	2.69 x 10 ¹¹
Water Wapor (H _a 0)	§ 10 ⁻²	< 2.69 x 10 ¹⁷

Criteria

- Inert
- Non-zero nuclear spin
- Large gyromagnetic ratio,
- Nuclear magnetic linewidths of diatomics or polyatomics usually > monatomics

Table II

Abundance of Stable Isotopes in the Atmosphere

(from the Chemical Rubber Handbook of Chemistry and Physics 1)

٠,		-	
Isotope	Fractional Abundance	Spin I	Larmor Frequency (KEz/gauss)
#1	0.999	1/2	4.258
#2	1.56 x 10 ⁻⁴		0.654
ue³	1.34 × 10 ⁻⁶	1/2	3.244
Re⁴	0.999	0	0
c12	0.989	0	0
c13	1.11 × 10 ⁻²	1/2	1.071
y ¹⁴	0.996	1	0.308
y15	3.7 x 10 ⁻³	1/2	0.431
0 ¹⁵	0.998	0	0
0 ¹⁷	3.7 x 10 ⁻⁴	5/2	0.577
0 ¹⁸	2.04 x 10 ⁻³	0	0
Ne 20	.909	0	0
Ne 21	2.57 x 10 ⁻³	3/2	0.336
Ne 22	8.82 x 10 ⁻²	0	0
AF38 AF40	3.37 x 10 ⁻³ 6.3 x 10 ⁻¹ .996	0 0	0 0 0
%278 %280 %282 %283 %284 %286	3.5 x 10 ⁻³ 2.27 x 10 ⁻² 0.116 0.116 0.569 0.174	0 0 0 9/2 0	0 0 0 0-164 0
Xe124 Xe126 Xe128 Xe129 Xe130 Xe131 Xe131 Xe134 Xe136	9.6 x 10 ⁻⁴ 9.0 x 10 ⁻⁴ 1.92 x 10 ⁻² 0.264 4.08 x 10 ⁻² 0.212 0.269 0.104 8.87 x 10 ⁻²	0 0 1/2 0 3/2 0	0 0 1.178 0 0.349 0

Xe¹²⁹ as a magnetic sensor

- Present in atmospheric air: 26% of total Xe, or 6x10¹¹cm⁻³
- Chemically inert, not affected by local conditions
- Nuclear spin = 1/2
- Nuclear magnetic relaxation time seconds
- Multi-photon optical pumping possible

Happer, W., "Laser Remote Sensing of Magnetic Fields in the Atmosphere by Two-Photon Optical Pumping of Xe¹²⁹" NADC Report N62269-78-M-6957 (1978)

Xe¹²⁹ as a magnetic sensor

 Atoms in one of the two spin states (nuclear magnetic moment M) will precess in the earth's magnetic field (B) at 1.178kHz/gauss (Larmor frequency)

Martin Squicciarini, "The Feasibility of Detecting a Magnetic Field From a Distant Platform," Naval Air Development Center Report, May 15, 1987

Energy Levels and Transitions in Xenon

Two-Photon Absorption LIF

Radar REMPI

2+1 Radar REMPI spectra of Xe: allowed two-photon transitions

Excited State (5p ⁵)	ΔJ	Energy (cm ⁻¹)	λ _{2-photon} (nm)	Linear (ΔJ= 0,±1, ±2)	Circular (ΔJ=±2)
$7p(5/2)_2$	+2	88,351.681	226.3	Yes	Yes
7p(3/2) ₂	+2	88,686.500	225.4	Yes	Yes
7p(1/2) ₀	0	88,842.256	225.1	Yes	No
6p'(3/2) ₂	+2	89,162.356	224.3	Yes	Yes
6p'(1/2) ₀	0	89,860.015	222.6	Yes	No

Ground state: 5p⁶ ¹S₀

Two-photon excitation spectrum of Xe obtained via 2+1 Radar REMPI

Same signals for linear and circular polarization for J=2 states

$$\Delta J = +2$$
 $7p(3/2)_2$

$$\Delta J = +2 \qquad 7p(5/2)_2$$

$$\Delta J = +2$$
 6p'(3/2)₂

Circular vs. Linear Polarization

$$\Delta J = 0 \qquad 7p(1/2)_0$$

$$\Delta J = +2 \qquad 7p(3/2)_2$$

Radar REMPI Detection of Xenon trace in air

Xe spectra in air

Spectra of the $6p'(3/2)_2$ line for Xe in air.

Interferents in detecting atmospheric Xe

The 226nm pump laser dissociates oxygen molecules, creating atomic oxygen.

The $7p(3/2)_2$ Xe line vs. photolytic atomic oxygen

Xe 129 Pumping Concepts

- Double resonant three photon pumping
 - Circular polarized 224.29 nm
 - Circular polarized 834.7nm
 - Generated by passing 224.29 nm light through a xenon cell using resonant driven lasing process similar to air laser in N and O.
 - Both beams focused with reflecting optics
- Single photon resonant pumping with locally generated, circularly polarized 129 nm light
 - Uses resonant and non resonant four wave mixing in air
 - Quasi phase matched in the forward direction
 - 129 nm has ~4mm absorption length in air << coherence length

Remote Preparation of Spin Polarized 129Xe by collinear double resonant nonlinear pumping

- Two co-propagating beams at 224.3 nm and 834.7 nm
- By virtue of the selection rules:
 - Atoms pumped from the m= +1/2 ground state (red loop) are trapped in that loop, i.e. eventually end up back in the m=+1/2 ground state
 - Atoms pumped from the m=-1/2 ground state (green & blue loops) have a chance of ending up in either of the ground states
 - Net effect is an eventual population of the m=+1/2 ground state

Generating the four wave mixing pump laser

Stimulated emission generated at 834.7

Similar process as the oxygen and nitrogen air lasers, but no dissociation needed.

Optical pumping to $m_F=+1/2$ ground state by direct absorption of 129 nm circular polarized light.

Absorption length in air is ~4 mm, but 129.5 nm light is constantly generated by resonant and non resonant phase matched four wave mixing through the focal zone.

Polarized Xe 129 detection concepts

Radar REMPI

- Selectivity by spectral separation using 2+1 Radar REMPI
 - Requires suppression of background from molecular ionization (Chemring support)
 - 60 GHz linewidth and 7 GHz splitting limits the selectivity
- Selectivity by microwave scattering polarization
- Selectivity by 1+1 Radar REMPI from three photon polarization pumped upper state
- Laser Induced Fluorescence
 - Selectivity by polarization of 834.7 nm fluorescence (assuming no depolarization)
 - Possible backward amplification

Selection based on spectroscopy is a problem

Pressure broadening does not allow effective spectral separation of F states

Influence of Pressure Broadening on the Two-Photon Optical Pumping Efficiency of ${\rm Xe}^{129}$ in Air

by W. Happer and Nam Tran

Separation of Hyperfine States

With full overlap, 3/2 and 1/2 states are not separable – the total line strength for each is the same

State Racah j-2	Energy a	^{\(\lambda\)} 2photon - \(\lambda\)	hfs GHz	Resolution r	Efficiency n
6p[5/2] ₂	78120.30	2560.15	- 3.41	.11	.09
6p[3/2] ₂	79212.97	2524.84	- 2.23	.07	.06
6p'[3/2] ₂	89162.88	2243.09	- 7.23	.24	.20

Radar REMPI Xe spectra in air

Spectra of the $6p'(3/2)_2$ line for Xe in air.

Concept for Radar REMPI Interrogation of hyperpolarized xenon 129

Features of 1+1 Radar REMPI of spin selected excited state

- High sensitivity due to 1+1 Radar REMPI
 - Nitric oxide is 1+1 Radar REMPI
- Negligible background ionization interference due to large separation from nitrogen and oxygen transitions
- Several wavelengths available depending on the intermediate state (eg. 826.65nm to $6p'(1/2)_1$)
- Interference of parasitic ionization from spin selection step reduced by >10 nsec time delay of the 1+1 step
- No solar background

Fluorescence Interrogation of hyperpolarized xenon 129

Fluorescence from m=+5/2 state is circular polarized Fluoresecence from m=+3/2 state is linear or circular with the same sense

So – drive with circular and look for m=+3/2 to m=+3/2 linear fluorescence (or opposite sign circularity) that selects only the m=-1/2 state

Summary Comments

- Radar REMPI has the sensitivity to detect parts per billion in the atmosphere
 - May be improved by higher power pulsed microwave, heterodyne detection and coherent detector array
 - May be improved by multiple laser ionization spots and coherent summation
 - May be improved for the detection of atomic species by fsec laser dissociation of nitrogen and oxygen, removing the background interference
- Xe ¹²⁹ can be hyperpolarized by doubly resonant, circular polarized three photon pumping as well as by direct pumping by four wave mixing generated resonant circular polarized single photon absorption
- Spin polarization of Xe ¹²⁹ can be detected by 1+1 circular polarized Radar REMPI from a spin selected state, populated by doubly resonant, circular polarized three photon pumping
- Location is determined by the laser focal volume
- Tracking by FLEET?

Tracking Air Motion by Femtosecond Laser Electronic Excitation Tagging (FLEET)

Molecular Tagging

- True measurement of flow (follows the molecules)
- Lines for velocity profiles
 - Instantaneous flow structure
 - Spatial correlations
 - Transverse structure functions
- Crosses for point vector velocity and vorticity
- Rectangles for shear stress and dilatation
- Two and three dimensional grids for full velocity field
- Rapid sequential imaging for flow evolution
- Placement and timing of the measurement is controlled by the writing laser
- Displacement can be viewed stereoscopically for three dimensional measurements
- Spatial resolution can be microns
- Non intrusive no physical probe required
- No seeding if nitrogen is a component of the flow

FLEET Features

- One laser no tuning required
- Time delayed camera
- Can follow the flow evolution with multiple images of the same tagged region
- Cross and grid patterns can be written easily
- Operational in humid air
- Works in combusting environments
- Strong signal even at low pressure
- Extensions
 - Spectrum can indicate the temperature and species present
 - Simultaneous Rayleigh scattering gives the density profile

Nitrogen Atom Recombination

Spectra

Prompt – Second positive band in air

Delayed –
"Pink afterglow"
First positive band in air

Emission in Nitrogen and in Air

Fluorescence Lifetime

Double exponential

- 1.1 µsec fast decay
- 8.3 µsec slow decay

FLEET Experimental setup

Subsonic Demonstration Video

- "Dead space" between laser pulses is removed for presentation
- Each progression includes about 10 line displacement shots due to the long lifetime in pure N2
- Measured centerline velocity ~150m/s

FLEET in Supersonic flow

FLEET Characteristics

- No seeding required
- Operates in air and nitrogen and other gas mixtures containing nitrogen
- Instantaneous profiles
- No intrusive probe required
- High resolution (better than 40 microns)
- Simplicity (one laser and one camera)
- Grids and crosses give vorticity and shear stresses
- Operation at pressures as low as 1 Torr to > 1 atm
- Operation at temperatures from condensation to combustion (<100K to > 2000K)
- Operation with combustion products (water vapor, etc)
- May provide temperature profiles
- May provide species profiles
- May provide density profiles

